丁丹丹
一、导师基本情况
姓名:丁丹丹 副教授
邮箱:DandanDing@djbet88.net
指导专业:计算机科学与技术,电子信息等
课题组网站://github.com/IVC-Projects
二、研究领域
1. 多媒体通信、智能视频图像压缩、三维点云编码与重建。结合信号处理与深度学习等方式智能挖掘二维像素或三维数据的时空域相关性,并结合内容实现自适应压缩、处理与重建,提升二维视频图像或三维点云的编码效率与重建质量,构建全息多媒体通信。
2. 三维视觉,包括3D视觉感知、内容生成、3D场景重建与理解。
三、主讲课程
操作系统、计算机网络等
四、教育和工作经历
2006年于浙江大学通信工程专业毕业,2207至2008年于瑞士EPFL联合培养,2011年获浙江大学通信与信息系统博士学位,2011至2015年于浙江大学工作,2016至今于杭州师范大学工作。
五、学术简介
主要从事多媒体通信、智能视频编码、三维点云压缩、重建与处理等研究工作。发表国内外高水平论文共60篇,包括TPAMI、Proceedings of the IEEE、TCyber、TIP、TVCG、TMM、TCSVT等TOP期刊,AAAI、ACM MM等CCF推荐A类会议及IEEE ISCAS、IEEE ICIP、IEEE DCC等领域知名学术会议。承担了国家自然科学基金面上项目、教育部博士点基金、省自然科学基金在内的多项国家和省部级项目,与Google公司、阿里巴巴、海康等企业有持续紧密合作。申请发明专利30余项,向国内外标准组织提交提案40项,获奖4项。曾担任ISO/IEC标准23001-1与23001-2的project leader,担任中国音视频编码标准组织AVS第13部分专题组联合组长,目前担任中国面向机器视觉编码工作组(DCM)点云组召集人。
六、主持教学科研项目
(1) 国家自然科学基金面上项目:面向边缘智能的原始成像数据理解与编码(62171174),2022.1-2025.12.
(2) 浙江省自然科学基金项目:基于深度神经网络的视频编码关键算法研究及全局优化(LY20F010013),2020.1-2022.12.
(3) Google CURP项目:面向AV2的智能视频编码,2018.9-2023.12
(4) 浙江大学省重点实验室开放项目:基于深度学习的视频参考帧质量优化方法研究 (2020-2023)
七、代表性论著
近期发表期刊论文:
(1) Gexin Liu, Ruixiang Xue, Jiaxin Li, Dandan Ding*, and Zhan Ma, GRNet: Geometry Restoration for G-PCC Compressed Point Clouds Using Auxiliary Density Signaling, IEEE Transactions on Visualization and Computer Graphics (TVCG), Nov. 2023.
(2) Junteng Zhang, Jianqiang Wang, Dandan Ding*, and Zhan Ma, Scalable Point Cloud Attribute Compression, IEEE Trans. Multimedia (TMM), Nov. 2023.
(3) Yichi Zhang, Gongchun Ding, Dandan Ding*, Zhan Ma, and Zhu Li, On Content-aware Post-Processing: Adapting Statistically Learned Models to Dynamic Content, ACM TOMM, 20(1):1-28, Jan. 2024.
(4) Dandan Ding, Junjie Wang, Guangkun Zhen, Debargha Mukherjee, Urvang Joshi, and Zhan Ma*, Neural Adaptive Loop Filtering For Video Coding: Exploring Multi-Hypothesis Sample Refinement, IEEE Trans. Circuits and Systems for Video Technology (TCSVT), 33(10):6057-6071, Oct. 2023. [Adopted in AOM Software Model]
(5) Jianqiang Wang; Dandan Ding(丁丹丹); Zhu Li; Xiaoxing Feng; Chuntong Cao; Zhan Ma; “Sparse Tensor-Based Multiscale Representation for Point Cloud Geometry Compression”, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Dec. 2022. [Test Model in MPEG]
(6) Dandan Ding, Wenyu Wang, Xinbo Gao, Zoe Liu, and Yong Fang*, Bi-Prediction Based Video Quality Enhancement via Learning, IEEE transactions on Cybernetics (TCyber), 2022, 52(2): 1207-1220. [杭州师范大学2022自然科学学术成果奖]
(7) Dandan Ding, Xiang Gao, Chenran Tang, Zhan Ma, Neural Reference Synthesis for Inter Frame Coding, IEEE Transactions on Image Processing (TIP), 2022, 31: 773-787.
(8) Dandan Ding#, Zhan Ma#, Di Chen, Qingshuang Chen, Zoe Liu, and Fengqing Zhu*, Advances In Video Compression System Using Deep Neural Network: A Review And Case Studies, Proceedings of the IEEE, 2021, 109(9): 1494-1520. (14.91) [该期刊首个AI编码综述]
(9) Dandan Ding, Chi Qiu, Fuchang Liu, Zhigeng Pan*, Point Cloud Upsampling via Perturbation Learning, IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2021, 31(12): 4661-4672.
(10) Dandan Ding, Lingyi Kong, Guangyao Chen, Zoe Liu, and Yong Fang*, A Switchable Deep Learning Approach for In-loop Filtering in Video Coding, IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2020, 30(7): 1871-1887.
近期发表学术会议论文:
(1) Yichi Zhang, Zhihao Duan, Ming Lu, Dandan Ding*, Fengqing Zhu, Zhan Ma, Another Way to the Top: Exploit Contextual Clustering in Learned Image Coding, AAAI 2024, Dec. 2023. (CCF A)
(2) Junteng Zhang, Tong Chen, Dandan Ding*, and Zhan Ma, YOGA: Yet Another Geometry-based Point Cloud Compressor, ACM Multimedia, Oct. 2023. (CCF A) [Test Model in MPEG]
(3) Junzhe Zhang, Tong Chen, Dandan Ding*, and Zhan Ma, G-PCC++: Enhanced Geometry-based Point Cloud Compression, ACM Multimedia, Oct. 2023. (CCF A)
(4) Jianqiang Wang, Dandan Ding, and Zhan Ma, Lossless Point Cloud Attribute Compression Using Cross-scale, Cross-group, and Cross-color Prediction, IEEE DCC, March 2023. (CCF B)
(5) Yichi Zhang, Hengyu Liu, Dandan Ding*, Zhan Ma, Low light raw image enhancement using paired fast fourier convolution and transformer, IEEE VCIP, 2022.
(6) Gexin Liu, Jianqiang Wang, Dandan Ding*, Zhan Ma, PCGFormer: Lossy Point Cloud Geometry Compression via Local Self-Attention, IEEE VCIP, 2022.
(7) Junteng Zhang, Gexin Liu, Dandan Ding*, Zhan Ma, Transformer and Upsampling-Based Point Cloud Compression, ACM Multimedia Workshop, 2022.
(8) Junjie Wang, Gongchun Ding, Dandan Ding*, Debargha Mukherjee, Urvang Joshi, Yue Chen., Quadtree-based Guided CNN for AV1 In-loop Filtering, IEEE ICIP, 2022. (CCF C) [Adopted in AOM Software Model]
八、发明专利及转化
(1) 一种用于视频编码帧间环路滤波的模型训练方法和使用方法(已转化)
(2) 一种用于视频编码的参考帧选择方法及装置(已转化)
(3) 一种基于多残差联合学习的水下图像增强方法(已授权)
(4) 一种视频编码方法(已授权)
(5) 一种视频处理方法(已授权)
(6) 一种基于神经网络的低光图像质量增强装置和方法
(7) 一种用于加快视频编码的编码单元划分方法及装置
(8) 一种基于点的点云几何有损压缩重建装置与方法
(9) 基于Transformer的点云几何压缩装置及方法
(10) 一种用于增强压缩点云重建质量的装置及方法